jueves, 13 de noviembre de 2014

Cosmología


Cosmología y sus concepciones actuales

En el s. XX la Cosmología está marcada por dos grandes avances: la teoría de la relatividad de Einstein, y la teoría inflacionaria. La relatividad unifica el espacio, el tiempo y la gravedad, y cambia la visión del tejido del Universo. La teoría inflacionaria plantea que el espacio se expandió rapidisimamente después del Big Bang.

Hoy, el estudio de la Cosmología se centra en la Física de Partículas. El principal instrumento de la Cosmología actual no son los telescopios, sino los grandes aceleradores de partículas. Buscan partículas que ayuden a resolver misterios como la composición de la materia oscura, qué pasó en los primeros momentos del Universo, o si existen otras dimensiones que no vemos.La Cosmología se ocupa científicamente de aspectos como la composición del Universo, su estructura, forma, origen, evolución y destino final. Para ello, se sirve de la observación astronómica y el conocimiento científico. Otras ciencias como la Astronomía, la Física y las Matemáticas son de gran utilidad para la Cosmología. Los avances tecnológicos son fundamentales en el desarrollo de la Cosmología moderna.

Teoría del Big Bang

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.
Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

Modelo Inflacionario

Según la teoría del Big Bang, la expansión del universo pierde velocidad, mientras que la teoría inflacionaria lo acelera e induce el distanciamiento, cada vez más rápido, de unos objetos de otros. Esta velocidad de separación llega a ser superior a la velocidad de la luz, sin violar la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz. Lo que sucede es que el espacio alrededor de los objetos se expande más rápido que la luz, mientras los cuerpos permanecen en reposo en relación con él.
A esta extraordinaria velocidad de expansión inicial se le atribuye la uniformidad del universo visible, las partes que lo constituían estaban tan cerca unas de otras, que tenían una densidad y temperatura comunes.

El gran colisionador de hadrones LHC

El Gran Colisionador de Hadrones (LHC, por sus siglas en inglés) es el mayor acelerador de partículas del mundo. En este experimento, los físicos del Laboratorio Europeo de Física de Partículas (CERN) hacen chocar entre sí partículas subatómicas (principalmente protones, uno de los constituyentes del núcleo del átomo) en puntos seleccionados donde se ubican grandes detectores (ATLAS, CMS, LHCb y ALICE). Estos registran las partículas resultantes de las colisiones para estudiar los elementos que componen la materia de la que está hecha el Universo, incluidos nosotros mismos, y sus interacciones.
Situado en la frontera franco-suiza cerca de Ginebra, el LHC es un anillo de 27 kilómetros de circunferencia ubicado a 100 metros bajo tierra. Es una de las máquinas más complejas construida nunca: sus 9.300 imanes superconductores, fundamentales para hacer girar los haces de partículas a velocidades cercanas a las de la luz, deben refrigerarse a una temperatura inferior a la del espacio exterior (-270 grados centígrados, cerca del cero absoluto); el interior del anillo es el lugar más vacío del Sistema Solar (10-13atmósferas) para evitar que las partículas colisionan con moléculas de gas; y cuando las partículas colisionan entre sí se generan temperaturas 100.000 veces más calientes que el interior del Sol.
Tras su inauguración en 2008, el LHC comenzó su actual periodo de funcionamiento a finales de 2009. A finales de marzo de 2010 alcanzó los 7 teraelectronvoltios (TeV) de energía de colisión entre partículas, la mayor registrada en un experimento de este tipo. En 2013-2014, el LHC se encuentra sometido a tareas de mantenimiento y actualización durante su primera parada técnica larga. A partir de 2015 volverán a producirse colisiones en su interior, alcanzando gradualmente la energía para la que está diseñado, 14 TeV.
Es un circuito cerrado por la tecnología actual. Hacer un recorrido lineal requeriría varias veces los 27Km. que tiene el circuito cerrado, resultaría muy caro y sería inestable. En un acelerador de circuito cerrado se puede dar más empuje a las partículas sin tener que extender la longitud de su recorrido. El límite es la capacidad de hacer girar una partícula cargada a la que se entregó mucha energía. Se necesitan campos magnéticos muy intensos y los que usa el LHC son los más altos alcanzados con la tecnología actual. Una razón más prosaica es que el túnel ya existía desde hace años, y se construyó el mejor acelerador compatible con lo que ya estaba.

No se advierte que pueda haber peligro en explorar las cosas nuevas que se ensayarán. El universo hace constantemente lo que hará el acelerador y no se han visto consecuencias catastróficas. Los rayos cósmicos que llegan a la Tierra y chocan con la materia de la atmósfera superior traen energías mayores, en algunos casos enormemente mayores. La diferencia es que en el acelerador se puede controlar el experimento y analizar con detalle lo producido.

Teoría de cuerdas

Postula que los ingredientes más básicos de la naturaleza no son partículas sin dimensión matemática, sino diminutos filamentos unidimensionales llamados cuerdas. La teoría de cuerdas amalgama las teorías de la relatividad general de einstein con la mecánica cuántica.
Las cuerdas cósmicas son finas líneas de material primordial con una densidad de energía extraordinaria, que se desplazan a velocidades relativistas y curvan el espacio que las rodea a su paso. Son capaces de generar concentraciones de materias para la formación de grandes estructuras astrofísicas, perturbas estas estructuras generando velocidades de deriva, hasta curvar rayos de luz procedentes de cuásares o galaxias distantes.


No hay comentarios:

Publicar un comentario